Lecture 5: Equilibrium electrochemistry. Molecular motion and conductivity. 04-10-2010

- Lecture plan:
  - equilibrium electrochemistry
    - representing redox reactions in terms of half-reactions
    - electrochemical cells
    - the Nernst equation
    - standard potentials and electrode calibration
  - transport properties
    - transport properties of gases
    - mobilities of ions
  - problems

# Equilibrium electrochemistry

$$Zn(s) + Cu^{+2}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

+ 
$$Zn(s) \longrightarrow Zn^{2+}(aq) + 2e$$
  
 $Cu^{+2}(aq) + 2e \longrightarrow Cu(s)$ 

• Any redox reaction can be expressed as difference of two half-reactions, which are conceptual reactions showing gain of electrons

$$Ox + \nu e^- \rightarrow Red$$





# Equilibrium electrochemistry

• Two half-reactions will run in the opposite directions in two half cells

Cathode 
$$Ox_1 + \nu e^- \rightarrow Red_1$$

Anode 
$$\operatorname{Red}_2 \to \operatorname{Ox}_2 + \nu e^-$$

The electrode where oxidation occurs is called **anode**, the electrode where reduction occurs is called **cathode**.



### **Electrochemical cells**



Notation:





Electrode

Electrode



# Types of half-cells



# The Nernst equation

 A cell where overall cell reaction hasn't reached chemical equilibrium can do electrical work as the reaction drives electrons through an external circuit



# Standard potentials and SHE

 Although it's not possible to measure potentials of electrodes separately, we can define a particular electrode as having zero potential at all temperatures.

Standard Hydrogen Electrode (SHE) at  $a_{H+}=1$  (pH=0) and p=1bar



## Standard potentials and SHE

 All other electrodes can be calibrated using SHE: ("Harned cell" – calibration of Ag/AgCl electrode)

$$Pt(s) | H_2(g) | H^+(aq) | HCl(aq) | AgCl(s) | Ag(s)$$
  
$$\frac{1}{2}H_2(g) + AgCl(s) \rightarrow HCl(aq) + Ag(s)$$

$$E = E^{\theta} (AgCl / Ag, Cl^{-}) - \frac{RT}{F} \ln \frac{a_{H^{+}} a_{Cl^{-}}}{a_{H_{2}}^{1/2}}$$
$$E = E^{\theta} - \frac{RT}{F} \ln a_{H^{+}} a_{Cl^{-}} = E^{\theta} - \frac{RT}{F} \ln b^{2} - \frac{RT}{F} \ln \gamma_{\pm}^{2}$$

For experimental calibration: 
$$E + \frac{2RT}{F} \ln b = E^{\theta} + Cb^{\frac{1}{2}}$$

Standard efm can be found from the offset



### **Electrochemical series**

• Cell emfs are convenient source for data on equilibrium constants, Gibbs energies etc.

$$\operatorname{Red}_1, \operatorname{Ox}_1 \| \operatorname{Red}_2, \operatorname{Ox}_2$$

$$E^{\theta} = E_2^{\theta} - E_1^{\theta}$$

Red<sub>1</sub> has thermodynamic tendency to reduce  $Ox_2$  if:  $E_2^{\theta} > E_1^{\theta}$ 

#### low reduces high

| Synoptic Table 7.2* Standard potentials at 298 K                                                 |                   |  |  |
|--------------------------------------------------------------------------------------------------|-------------------|--|--|
| Couple                                                                                           | E <sup>o</sup> /V |  |  |
| $Ce^{4+}(aq) + e^- \rightarrow Ce^{3+}(aq)$                                                      | +1.61             |  |  |
| $Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$                                                        | +0.34             |  |  |
| $\mathrm{H}^{+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \frac{1}{2}\mathrm{H}_{2}(\mathrm{g})$ | 0                 |  |  |
| $AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$                                                 | +0.22             |  |  |
| $Zn^{2+}(aq) + 2 e^{-} \rightarrow Zn(s)$                                                        | -0.76             |  |  |
| $Na^+(aq) + e^- \rightarrow Na(s)$                                                               | -2.71             |  |  |

\* More values are given in the *Data section*.

| Least strongly reducing |
|-------------------------|
| Gold                    |
| Platinum                |
| Silver                  |
| Mercury                 |
| Copper                  |
| (Hydrogen)              |
| Lead                    |
| Tin                     |
| Nickel                  |
| Iron                    |
| Zinc                    |
| Chromium                |
| Aluminium               |
| Magnesium               |
| Sodium                  |
| Calcium                 |
| Potassium               |

\* The complete series can be inferred from Table 7.2.

### Species selective electrodes

 Ion-selective electrode is an electrode that generates a potential in response to the presence of a solution of specific ions





### Determination of thermodynamic functions by emf

• By measuring emf Gibbs energy can be determined:  $\Delta_r G^{\theta} = -\nu F E^{\theta}$ 

 The temperature coefficient of standard emf gives standard entropy of the reaction:

 $\frac{de^{\theta}}{dT} = \frac{\Delta_r S^{\theta}}{\nu F}$ 

 and therefore provides non-calorimetric way to measure enthalpy

$$\Delta_r H^{\theta} = \Delta_r G^{\theta} + T \Delta_r S^{\theta} = -\nu F \left( E^{\theta} - T \frac{dE^{\theta}}{dT} \right)$$

# **Application: Batteries**

• Lead-acid rechargeable battery (inv. 1859)

 $PbO_{2} + 4H^{+}(aq) + SO_{4}^{2-}(aq) + 2e^{-} \rightarrow PbSO_{4}(s) + 2H_{2}O \qquad E^{\theta} = 1.685$  $Pb(s) + SO_{4}^{2-}(aq) \rightarrow PbSO_{4}(s) + 2e^{-} \qquad E^{\theta} = -0.356$ 

- During the charging, the reactions are reversed
- Life time is limited due to mechanical stress due to formation and dissolution of solid material
- Alkaline cell:

 $Zn(s) + 2OH^{-}(aq) \rightarrow ZnO(s) + H_2O + 2e^{-}$   $E^{\theta} = 1.1$  $2MnO_2(s) + H_2O + 2e^{-} \rightarrow Mn_2O_3(s) + 2OH^{-}(aq)$   $E^{\theta} = -0.76$ 



### Structure of metal-electrolyte interface

• Formation of electrical double layer due to specifically and non-specifically adsorbed ions





### Measuring absolute half-cell potential

• The energy diagram of the cell:



### Measuring absolute half-cell potential

 Gomer and Tryson experiment (J.Chem.Phys 66(1977), 4413): variable DC voltage is applied to the gold-electrode capacitor with a vibrating plate, AC voltage is measured



• Absolute half cell potential for gold air electrode can be measured

$$E_{Au} = V_{M2Au} - \phi_{Au}$$

• Absolute SHE potential  $E^{\theta}_{SHE} = -4.73V$ 

# **Molecular motion**

### The Aim:

 Describe the migration of properties through the matter using simple random motion picture

#### Within this lecture:

- Transport properties of a substance: ability of transferring matter, energy or other property from one place to another
- Basis for description of the main transport properties:
  - **Diffusion**: migration of matter down a concentration gradient
  - Thermal conduction: migration of energy down a temperature gradient
  - Electric conduction: migration of charge along electric potential
  - Viscosity: migration of linear momentum down a velocity gradient

- Rate of migration of a property is measured by its *flux J* (quantity of property passing through a unit area per unit time), e.g. matter flux , energy flux
- Flux of property is usually proportional to the first derivative of some other related property (from experimental observation), e.g. matter flux~*dN/dz* (*N* - number density of particles), energy flux ~*dT/dz*



- Viscosity of fluids (arises due to transfer of momentum)

 $J(x-component of momentum) = -\eta \frac{dv_x}{dz}$ coefficient of viscosity

A The second sec

- Transport properties of gases can be fairly accurately predicted with the kinetic theory gases.
- Kinetic model assumes that the only contribution to gas energy is a kinetic energy
- Three main assumptions:
  - Gas consist of molecules of mass **m**
  - Size of molecules is negligible (d << distances)</p>
  - Molecules interact through elastic collisions (e.g. kinetic energy is conserved at every collision)

• Application of kinetic theory of gases

| Property             | Transported quantity | Simple kinetic theory                              | Units                                |
|----------------------|----------------------|----------------------------------------------------|--------------------------------------|
| Diffusion            | Matter               | $D = \frac{1}{3}\lambda \bar{c}$                   | $m^2 s^{-1}$                         |
| Thermal conductivity | Energy               | $\kappa = \frac{1}{3} \lambda \bar{c} C_{V,m}[A]$  | J $K^{-1} m^{-1} s^{-1}$             |
|                      |                      | $=\frac{\bar{c}C_{V,m}}{3\sqrt{2}\sigma N_{A}}$    |                                      |
| Viscosity            | Linear momentum      | $\eta = \frac{1}{3} \lambda \bar{c} m \mathcal{N}$ | ${\rm kg}~{\rm m}^{-1}~{\rm s}^{-1}$ |
|                      |                      | $=\frac{m\bar{c}}{3\sqrt{2}\sigma}$                |                                      |

where 
$$\lambda$$
 is a mean free path and  $\overline{c} = \int_{0}^{\infty} v f(v) dv = \left(\frac{8RT}{\pi M}\right)^{\frac{1}{2}}$  is a mean velocity

- The diffusion coefficient:  $D = \frac{1}{3}\lambda \overline{c}$ 
  - 1. Mean free path is decreasing when pressure increases, so D decreases with increasing pressure
  - 2. Mean velocity increasing with T, so does the D.
  - 3. Mean free path increases when the collision cross section decreases, so D is larger for small molecules
- The thermal conductivity:  $\kappa = \frac{1}{3} \lambda \overline{c} C_{v,m}[A]$ 
  - 1. Mean free path is decreasing when pressure increases, and therefore inversely proportional to the concentration, so  $\kappa$  is independent on pressure
  - 2. Thermal conductivity is greater for gases with high heat capacity.

• The viscosity: 
$$\eta = \frac{1}{3} M \lambda \overline{c}[A]$$

- 1. The viscosity is independent on pressure
- 2. Because  $\overline{c} \propto T^{\frac{1}{2}}$ ,  $\eta \propto T^{\frac{1}{2}}$  the viscosity of gas is increasing with T

# Molecular motion in liquids

- Experimentally measured in inelastic neutron scattering, as a relaxation time in e.g. NMR and through viscosity
- Activation origin for viscosity in liquids (i.e. a molecule needs to escape from its neighbors).

Thus, it should be inversely proportional to the probability of escape:

$$\eta \propto \exp(E_A/RT)$$

Viscosity drops sharply with temperature



# Conductivity of electrolyte solution



# Conductivity of electrolyte solution

- Strong electrolytes
  - fully ionized in the solution
  - Kohlrausch's law

$$\Lambda_{m} = \Lambda_{m}^{0} - Kc^{1/2}$$
Limiting molar conductivity

 Law of the independent migration of ions: limiting molar conductivity can be expressed as a sum of ions contribution

$$\Lambda_m^0 = \nu_+ \lambda_+ + \nu_- \lambda_-$$

i.e. ions migrate independently in the zero concentration limit

|                  | $\lambda/(\mathrm{mS}\mathrm{m}^2\mathrm{mol}^{-1})$ |                 | $\lambda/(\mathrm{mS}\mathrm{m}^2\mathrm{mol}^{-1})$ |
|------------------|------------------------------------------------------|-----------------|------------------------------------------------------|
| $\mathrm{H}^+$   | 34.96                                                | OH-             | 19.91                                                |
| Na <sup>+</sup>  | 5.01                                                 | Cl <sup>-</sup> | 7.63                                                 |
| $K^+$            | 7.35                                                 | Br <sup>-</sup> | 7.81                                                 |
| Zn <sup>2+</sup> | 10.56                                                | $SO_{4}^{2-}$   | 16.00                                                |

For example, limiting molar conductivity of  $BaCl_2$  in water will be: 12.73+2\*7.63=27.98 mS m<sup>2</sup> mol<sup>-1</sup>.

# Conductivity of electrolyte solution

• Weak electrolytes: not fully ionized in the solution

$$HA(aq) + H_2O \longrightarrow H_3O^+(aq) + A^-(aq) \qquad K_a = \frac{a_{H_3O^+}a_{A^-}}{a_{HA}}$$

If we define degree of deprotonation:

$$\begin{bmatrix} H_{3}O^{+} \end{bmatrix} = \alpha c \quad \begin{bmatrix} A^{-} \end{bmatrix} = \alpha c \quad \begin{bmatrix} HA \end{bmatrix} = (1 - \alpha)c_{1/\Lambda_{m}}$$

$$K_{a} = \frac{\alpha^{2}c}{1 - \alpha} \quad \alpha = \frac{K_{a}}{2c} \left( \left( 1 + \frac{4c}{K_{a}} \right)^{1/2} - 1 \right)$$

$$\Lambda_{m} = \alpha \Lambda_{m}^{0}$$
Ostwald's dilution law
$$\frac{1}{\alpha} = 1 + \frac{\alpha c}{K_{a}} \qquad \frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{0}} + \frac{c\Lambda_{m}}{K_{a} \left( \Lambda_{m}^{0} \right)^{2}}$$

$$L_{a} = 1 + \frac{\alpha c}{K_{a}} \qquad \frac{1}{\Lambda_{m}} = \frac{1}{\Lambda_{m}^{0}} + \frac{c\Lambda_{m}}{K_{a} \left( \Lambda_{m}^{0} \right)^{2}}$$

• We need to know how ions move to understand e.g. Kohlrausch law

Let's consider uniform electric field between the electrodes in solution:



Example: Cs<sup>+</sup> ion: z=1, r=170pm,  $\eta$ =1\*10<sup>-3</sup> kg m<sup>-1</sup> s<sup>-1</sup>. Than  $\mu$ =5\*10<sup>-8</sup> m<sup>2</sup>/Vs, i.e. with 1V applied across 1cm the drift speed is 5um/s.

• Mobility and conductivity

$$\lambda = z\mu F, \qquad F = N_A e \qquad \text{Faraday constant}$$
Let's consider a fully dissociated electrolyte:  

$$J(ions) = \frac{s\Delta tA \cdot vcN_A}{A\Delta t} = svcN_A$$

$$J(charge) = zes vcN_A = zsvcF = z\mu EvcF$$

$$I = J \cdot A = z\mu EvcFA = z\mu vcFA \frac{\Delta \phi}{l}$$

$$I = \frac{\Delta \phi}{R} = G\Delta \phi = \kappa A \frac{\Delta \phi}{l} \qquad \Longrightarrow \qquad \mathbf{K} = z\mu vcF$$

 $s_{\Delta t}$ 

 $s_{+}\Delta t$ 

• In solution

$$\Lambda_m^0 = (z_+ \mu_+ \nu_+ + z_- \mu_- \nu_-) F$$

Example: if  $\mu$ =5\*10<sup>-8</sup> m<sup>2</sup>/Vs and z=1,  $\Lambda$ =10mS m<sup>2</sup> mol<sup>-1</sup>.

• Transport numbers – fraction of total current carried by ions of specific type

$$t_{\pm} = \frac{I_{\pm}}{I}, \qquad t = t_{+} + t_{-}$$

• Limiting transport numbers – defined in the limit of zero concentration of electrolyte solution

$$t_{\pm}^{0} = \frac{z_{\pm}\mu_{\pm}\nu_{\pm}}{z_{+}\mu_{+}\nu_{+} + z_{-}\mu_{-}\nu_{-}}$$
  
as  $z_{+}\nu_{+} = z_{-}\nu_{-} \implies t_{\pm}^{0} = \frac{\mu_{\pm}}{\mu_{+} + \mu_{-}}$   
or, using  $\lambda = z\mu F \implies t_{\pm}^{0} = \frac{\nu_{\pm}\lambda_{\pm}}{\nu_{+}\lambda_{+} + \nu_{-}\lambda_{-}} = \frac{\nu_{\pm}\lambda_{\pm}}{\Lambda_{m}^{0}}$ 

as we can measure transport number of individual ions, the ionic conductivity and ionic mobility can be determined as well

• mobility of ions is not directly correlated with their size



conduction mechanism for hydrogen



### Moving boundary technique



### Conductivities and ion-ion interactions

 $\Lambda_m^\circ$ //(S cm<sup>2</sup> mol<sup>-1</sup>)

- Reduction of ion mobility due to retardation of ionic atmosphere is called relaxation effect
- Enhanced viscous drag due to ionic atmosphere moving in opposite direction is called electrophoretic effect

Those two effect taken into account lead to  $c^{\frac{1}{2}}$  dependence in Kolrausch law



# Ion channels and Ion pumps

- passive ion transport: ions transport down the concentration and membrane potential gradient
- active transport: driven by an exergonic process
- transport mechanisms:
  - by carrier molecule
  - through a channel former
- Channel formers:
  - ion channels: highly selective proteins that can open and close in response to some stimuli (e.g. potential built-up or effector molecule)
  - ion pumps: proteins actively transporting particular ions



Integral

protein

Bilayer

Interior

## Ion channels and Ion pumps

- K<sup>+</sup> ion channel:
  - 1. K<sup>+</sup> ion stripped of the hydration shell
  - 2. gripped by carbonyl group in the selectivity filter region
  - 3. K<sup>+</sup> ion is driven out by electrostatic interaction with the next ion
- H<sup>+</sup>-ATPase ion pump that couples proton flow to synthesis of ATP





# Class problems:

- Atkins 6.21(a) Devise cells in which the following are the reactions and calculate the standard emf in each case:
   (a) Zn(s) + CuSO<sub>4</sub>(aq) → ZnSO<sub>4</sub>(aq) + Cu(s)
   (b) 2 AgCl(s) + H<sub>2</sub>(g) → 2 HCl(aq) + 2 Ag(s)
   (c) 2 H<sub>2</sub>(g) + O<sub>2</sub>(g) → 2 H<sub>2</sub>O(l)
- Atkins 6.22(a) Use the Debye-Huckel limiting law and the Nernst equation to estimate the potential of the cell Ag|AgBr(s)|KBr(aq,0.050mol/kg)||Cd(NO<sub>3</sub>)<sub>2</sub>(aq, 0.010mol/kg) |Cd at 25°C.
- Atkins 20.24a The mobility of Rb<sup>+</sup> ion in aqueous solution is 7.92x10<sup>-8</sup> m<sup>2</sup>/sV at 25°C. Potential difference between two electrodes 8mm apart is 35V. Calculate the drift speed of Rb ions.
- Atkins 20.25a The limiting molar conductivities of KCI, KNO<sub>3</sub>, and AgNO<sub>3</sub> are 14.99 mS m<sup>2</sup> mol<sup>-1</sup>, 14.50 mS m<sup>2</sup> mol<sup>-1</sup>, and 13.34 mS m<sup>2</sup> mol<sup>-1</sup>, respectively (all at 25°C). What is the limiting molar conductivity of AgCI at this temperature?